ECIMF Approach
Business-aware system integration

CEN/ISSS/WS-EC project

WebGiro

Andrzej Bialecki
Chief System Architect
<abial@webgiro.com>

Europe CompTIA ECSB meeting, Reading UK, 14.09.2001
Understanding the context

- IT infrastructure exists to support business goals
 - IT systems don’t exist in a void
 - IT systems play specific roles in the business
- Business context is crucial
 - Information is useful only when considered in the business context
 - Business context determines the meaning of data and information exchange
- Business flow before technical flow
ECIMF Principles

- Top-down analysis
- Structured, iterative process
ECIMF deliverables

✦ General Methodology (ECIMF-GM)
 ✦ Modeling notation
 ✦ Integration methodology: business context- and process-driven, multi-layer

✦ Technical Specification (ECIMF-TS)
 ✦ Integration Guidelines
 ✦ Syntax for the recipes (“Manifest”)

✦ Proof of Concept (ECIMF-POC)
 ✦ Examples of specific mappings
 ✦ Open Source tools to support ECIMF
ECIMF Applied - current work

Framework A
- Business context
- Technical infrastructure

Framework B
- Business context
- Technical infrastructure

ECIMF Model
- Business, Dynamics, Semantics, Syntax

MANIFEST interpreter

MANIFEST
Methodology

- Modeling notation: a UML profile (EDOC?)
 - Business context, process mediation, semantic translation, syntax mapping → unified picture
 - UMM provides a good basis, but not for expressing the transformations

- Integration methodology
 - Pragmatic approach:
 - Provide a basic (but extensible) methodology, firmly based on both research and experience of practitioners

- Producing useful, applicable results
 - Limiting the scope

- Integration Guidelines
 - Worksheets and procedures for acquiring the knowledge needed to design the integration recipes
Integration Guidelines

- Step-by-step integration scenarios
 - Using ECIMF methodology
 - Clearly defined extension points
 - Additional methods, artifacts and tools
- First draft has been published
- E-Commerce Framework Integration Guideline (FIG)
Tools

- **Semantic Translation**
 - **Conzilla - concept browser**
 - To be extended with explicit support for ECIMF - both notation and MANIFEST generation
 - Other ontology engineering tools?
 - Multilingual Upper Level E-commerce Ontology (MULECO) - CEN/ISSS project

- **Process Mediation**
 - ? (many commercial process management tools are available)

- **Syntax Mapping**
 - ? (many commercial data mapping tools are available)
Example: RosettaNet & EDI

- **Framework A: RosettaNet**
 - PIP3A1: Req. Quote
 - PIP3A4: Req. Purchase Order
 - PIP3C3: Notify of Invoice

- **Framework B: EDI**
 - REQUOTE / QUOTES
 - ORDERS / ORDRSP
 - INVOIC / REMADV
 - (APERAK / CONTRL)
Both partners follow this model

- Required for interoperability
- Clear transaction boundaries
Semantic translation rules

- Influence both the process mediation and the syntax mapping
Semantic translation and ontologies

Ontologies
- Specification of a shared conceptualization of a domain, "consensus view"

Approximate re-classification
- Semantic enrichment
- Upper-level ontologies (shared vocabularies)

Copyright WebGiro AB, 2001. All rights reserved.
Semantic translation (2)

<table>
<thead>
<tr>
<th>RosettaNet</th>
<th>ECIMF Manifest</th>
<th>EDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV-set</td>
<td>f()</td>
<td>Box</td>
</tr>
<tr>
<td>+color</td>
<td></td>
<td>+height</td>
</tr>
<tr>
<td>+stereo</td>
<td></td>
<td>+width</td>
</tr>
<tr>
<td>+height</td>
<td></td>
<td>+depth</td>
</tr>
<tr>
<td>+width</td>
<td></td>
<td>+weight</td>
</tr>
<tr>
<td>+depth</td>
<td></td>
<td>+stackingLevels</td>
</tr>
<tr>
<td>+unitPrice</td>
<td></td>
<td>+topSide</td>
</tr>
<tr>
<td>+productID</td>
<td></td>
<td>+fragile</td>
</tr>
<tr>
<td>+serialNo</td>
<td></td>
<td>+productID</td>
</tr>
</tbody>
</table>

Semantics
- Definition
- Properties
- Constraints

Mapping rules
- Relationships
- Constraints
- External Resources

Semantics
- Definition
- Properties
- Constraints

- **Re-classification (changing contexts)**
 - {Syno-, homo-, hyper-, hypo-} -nyms
 - Use of external resources
 - Properties vs. associations

Copyright WebGiro AB, 2001. All rights reserved.
Semantic translation (3)

- Names of concepts and properties
- Values & constraints (e.g. code lists, product catalogs)
- Foundation for syntax mapping
Data element mapping
Builds on the knowledge collected in previous steps
Top-down vs. bottom-up
MANIFEST generation

Manifest
 Map id='WidgetsToXYZ'
 Framework id='A' name='WidgetsLtd'
 BusinessProcessDef
 ...(an RNIF process def.) ...
 Framework id='B' name='XYZ Corp.'
 BusinessProcessDef uri='uddi: ...
 MappingRules
 SemanticTranslation
 RuleSet from='A' to='B'
 Rule def='box.width = tv_set.width + 5'
 Concept in='A' name='TV-set' as='tv_set'
 Concept in='B' name='Box' as='box'
 ...(other mapping rules) ...
 ProcessMediation
 ...(process mediator spec.) ...
 SyntaxMapping
 ...(message format & protocol mapping) ...

Runtime configuration

ECIMF-compliant Runtime

MANIFEST interpreter

Technical infrastructure

Low-level adapters

Intermediate storage

External resources

Process Mediator

Low-level adapters

Technical infrastructure
Summary

- E-Commerce Integration Meta-Framework
 - Business context
 - Process Mediation
 - Semantic Translation
 - Syntax Mapping
- Work in progress … Needs more research
 - E.g. REA, UMM, Porter VC, SCOR, STEP/EXPRESS …
- Needs reviews and contributions from practitioners
Further information

- ECIMF Information Center
 - http://www.ecimf.org
- CEN/ISSS, Workshop for E-Commerce
 - http://www.cenorm.be/iss
 - http://www.cenorm.be/iss/Workshop/ec
- WebGiro AB, Sweden
 - http://www.webgiro.com
 - info@webgiro.com
- Contact the author
 - abial@webgiro.com
Conzilla: content in context

Conclusive thinking (or deductive reasoning) was introduced into geometry by the Greeks around 600 B.C. This was a decisive step in creating the discipline of mathematics as we know it today.
Conzilla: changing context
Conzilla: capturing dynamics