

Methodologies for Ontology-Based Semantic Translation

H. Stuckenschmidt, H. Wache, U. Visser, G. Schuster

The BUSTER Project: TZI, Intelligent Systems Group

University of Bremen

Outline

- A Survey of Existing Approaches
 - The Role on Ontologies
 - Used technologies
 - Conclusion
- Methodologies in the BUSTER Project
 - Integration of Data Structures
 - Integration of Catalogues

Motivation

- Interoperability problem
 - Structural and semantical heterogeneity
 - *Meaning* of the information
- Causes for semantic heterogeneity (Goh, 1997)
 - Confounding conflicts (same meaning, different context, e.g. "latest trade price")
 - Scaling conflicts (different reference systems, e.g. currencies)
 - Naming conflicts (homonyms, synonyms)
- Using ontologies to overcome the problem
- Ontologies as key application (Uschold & Grüniger 1996)

Motivation (cont.)

- Survey of existing solutions
 - 25 approaches
- Focus:
 - Role and use of ontologies
 - Integration of information sources (not knowledge bases)

SIMS, TSIMMIS, OBSERVER, CARNOT, KRAFT, Infosleuth, PICSEL, DWQ, Ontobroker, SHOE, MECOTA, BUSTER,...

Evaluation criteria

- Use of ontologies
 - Role and architecture of ontologies influence the representation
- Ontology representation
 - Different representation capabilities
- Use of mappings
 - Ontologies linked to information sources
 - Several ontologies cause mappings between them
- Ontology engineering
 - Acquisition support and reuse

Role of ontologies

- Content explication
 - Single ontology approaches
 - Global ontology, shared vocabulary (e.g. SIMS)
 - Can be combination of several ontologies because of modularization
 - Same view on domain nessecary, susceptible when information source changes, minimal ontology commitment hard to find
 - Multiple ontology approaches
 - Information source has own ontology (e.g. **OBSERVER**)
 - No shared vocabulary
 - No common and minimal ontology commitment needed (about global ontology)
 - Problems with different source ontologies (interontology-mapping needed)
 - Hard to define inter-ontology mappings in reality

Role of ontologies (cont.)

Content explication

- Hybrid approaches
 - Information source has own ontology
 - Built upon one global shared vocabulary
 - Description of local ontologies is interesting
 - COIN: context is attribute-value vector
 - MECOTA: Information source is annotated by label for the semantics, label combines primitive terms
 - BUSTER: Shared vocabulary as "general ontology" (e.g. value ranges), source ontology is refinement (values are restricted)
 - Advantages
 - New information sources easily added
 - Comparable" ontologies due to shared vocabulary
 - Disavantage
 - Reuse of existing ontologies difficult

Role of ontologies (cont.)

	Single ontologies	Multiple ontologies	Hybrid ontologies
Implementation	straight-forward	costly	reasonable
enort			
Semantic	similar view of	supports heterogeneous	supports heterogeneous
heterogeneity	domain	views	views
Adding/removing	need for adaption in	new source ontology;	new source ontology
sources	the global ontology	relation to other ontologies	
Comparsion		difficult due to lack of	simple due to shared
of ontologies		shared vocabulary	vocabulary

Role of ontologies (cont.)

Additional roles

- Query model (e.g. SIMS)
 - User formulates in terms of ontology
 - System reformulates in sub-queries of each source
 - Ontology "acts" as global query scheme
 - User has to know structure and contents of ontology
- Verification
 - Mapping from global schema to local source schema during integration
 - Sub-query correct w.r.t. a global query if local sub-query provides a part of the queried answers
 → sub-query must be contained in global query
 - DWQ
 - Sub-queries are correct if their ontology concepts are subsumed by the global query concepts
 - PICSEL
 - Also generates mapping hypotheses which are validated w.r.t the global ontology

Ontology representation

- Focus on languages and structures
 - No contents discussion
 - Restriction to object-centered knowledge representations
- Description logic variants dominant
 - Pure description logic languages
 - CLASSIC (e.g. OBSERVER, SIMS, Kayshap & Sheth)
 - GRAIL (e.g. Tambis)
 - OIL (e.g. BUSTER)
 - Extensions of description logic (incl. rule bases)
 - CARIN (e.g. PICSEL) \rightarrow DL with function-free horn rules
 - *AL-log* (e.g. DWQ) \rightarrow DL and datalog combination
 - *DLR* (e.g. Calvanese et al., 2001) \rightarrow DL with *n*-ary relations

Ontology representation (cont.)

- Frame-based representations
 - Systems
 - COIN, KRAFT, Infosleuth, Infomaster, Ontobroker
 - Languages
 - Ontolingua, OKBC, F-Logic

Mapping

- Integration task puts ontologies into context
 - Relation ontology and their environment important
 - Two mappings are important
 - Mapping between ontology and the information they describe
 - Mapping between ontologies
- Connection to information sources
 - Structural resemblance (1-1 copy of DB-structure) (e.g. SIMS, TSIMMIS)
 - Definition of terms (only link to source) (e.g. BUSTER)
 - Structural enrichment (e.g. OBSERVER, KRAFT, PICSEL, DWQ)
 - Common approach, combines the first two approaches
 - Logical model that refers to the DB scheme, additional definitions
 - Meta-annotation
 - New approach w.r.t to the semantic web
 - Annotation resembling parts of the real information (e.g. SHOE)
 - Annotation to avoid redundancy (e.g. Ontobroker)

Mapping (cont.)

- Inter-ontology mapping
 - Defined mapping
 - E.g. KRAFT: Translation between ontologies by mediator agents
 - 1-1 mappings between classes and values
 - Flexible but fails to ensure semantic preservation
 - Lexical relations
 - Quantified inter-ontology relationships from linguistics (e.g. OBSERVER)
 - Synonym, hyponym, overlap, covering, disjoint
 - \bullet No formal semantics \rightarrow subsumption is rather heuristic
 - Top-level grounding (e.g. DWQ)
 - Relate all ontologies to a top-level ontology
 - Stay inside a formal representation language
 - Semantic correspondences (e.g. MECOTA, BUSTER)
 - Find semantic correspondences, use shared vocabulary
 - FCA-approaches

Conclusions

State-of-the-art

- "Typical" information integration system
 - Use established technologies
 - Ontologies for the explication of the contents of an information source (mainly by describing the meaning of table and datafield names)
 - Each information source has ontology (resembles and extends structure of DB)
 - Integration with either common ontology or fixed mappings between ontologies
 - Ontology language based on DL
 - Subsumption reasoning for computation relations between information sources and (sometimes) for validation of the integration result
 - Specialized tools (mainly editors) support the process of building an ontology

Conclusions (cont.)

- Open questions
 - Mapping between ontologies still "ad-hoc or arbitrary" rather than wellfounded
 - Need for the investigation on a theoretical and empirical basis
 - Lack of methodologies supporting the development and use of ontologies
 - Methodology should be language independent

BUSTER: Systemarchitektur

Mindiators and Wrappers

- Wrappers provide a uniform interface to different heterogeneous information source
- Mediators "combine, integrate, and abstract" [Wiederhold91] the information
- Mediators can be specified by rules
- Application in a heavy changing environment (e.g. the internet)

Problem: How to find the specification (i.e. transformation rules) for the mediator?

The Three Steps of the Integration Method

generation of the specification (i.e. rules)

semantic intercorrespondencies between the source descriptions

semantic and syntactic description of the sources

Procedure:

- describing each source
- relate the source items
- transform relationship into specification
- Assistants help the user in each step
- Syntactic and **semantic description** of the

SOUICES Intelligent Systems

- Terminology = primitive domain vocabulary
- Application Ontology (AO) = complex terms (labels) built from primitive terms with constructors
- In AO terms are arranged according to the structure of a source
- Constructors
 - AND, OR, NOT
 - COMP (combination)
 - OF (specialization)
- Well-founded semantics (description logic)

Assisting the Integration Process

- several software assistants support the users in their tasks
 - assistants only generate hypotheses validated by an user
- assistants are:
 - for the description of sources
 - case-based reasoning: (similar structure = similar semantics)
 - knowledge-based assistants (e.g. using common sense knowledge like CYC)
 -
 - for the semantic intercorrespondancies:
 - abduction from the semantic description of the source

currently under development

BUSTER: Systemarchitektur

- Semantic Heterogeneity
- Example:
 - Sharing geographic information
 - Integration of landuse classes from different catalogues

Motivation

The Problem: Different Catalogues

• ATKIS-OK-1000

CORINE Landcover

Role of Ontologies

Sources of Information

- Data Catalogues
 - Task specific
- Upper-Level Ontologies
 - Upper-Cyc [Lenat/Guha1990], Pangloss [Knight/Luk1994] ...
- Scientific Classifications
 - Classification of plant life, ...
- Domain Thesauri
 - Task specific thesauri, like UDK, GEMET, ...
- Linguistic Thesauri
 - WordNet, ...

1. Finding bridge concepts

2. Defining Properties

- Search in Gemet:
 - Geography: The study of the natural features of the earth's surface, comprising topography, climate, soil, vegetation, etc. and man's response to them.
 - Region: A designated area or an administrative division of a city, county or larger geographical territory that is formulated according to some biological, political, economic or demographic criteria.
- OIL-Notation:

slot-def vegetation Domain Geographical-Region

class-def Geographical-Region

3. Finding property values

Search for "vegetation" in Gemet:

- The plants of an area considered in general or as communities [···]; the total plant cover in a particular area or on the Earth as a whole.
- WordNet: The plant life characterizing a specific geographic region or environment.
- Integration of standard scientific taxonomies
 - GoogleWebdirectory (plants)

4. Adapt shared vocabulary

class-def c-Broad-leaved-forest subclass-of Geographical-Region slot-constraint vegetation value-type Magnoliophyta

Enhance shared vocabulary:

class-def c-Broad-leaved-forest

subclass-of Geographical-Region slot-constraint vegetation value-type Magnoliophyta and (trees or shrubs)

5. Evaluation / Refinement

- Evaluation through re-classification
 - Try to annotate all concepts from data catalogues with shared vocabulary
 - Classify by reasoning mechanisms (FaCT, Racer)
- Examine results
- Iterative Refinement if needed
 - Return to Step 1 to 4

Summary

- Semantic interoperability is an important problem
 - Data Warehouses and distributes
 - World-Wide Web, Intranets
- Ontologies are a key technology
 - Many integration approaches rely on them
 - New interest in connection with the World Wide Web

Summary

- Technical Solutions exist
 - Many Systems, some products
 - Well founded in formal logics and still applicable
- Modeling is the Bottleneck
 - Ontologies have to be built
 - Information has to be annotated

Conclusion

- There is a need for
 - methodologies,
 - ...that are partially automated
 - ...and supported by tools.
- Reserach on this Issue must go hand in hand with applications, because we have to learn from the users.

